goo.gene

class goo.gene.Circuit[source]

Bases: object

class goo.gene.CircuitEngine[source]

Bases: object

copy() CircuitEngine[source]

Return copy of engine.

Return type:

CircuitEngine

load_circuits(*circuits: Circuit)[source]

Load engine with model network.

Parameters:

circuits (Circuit)

retrieve_concs() dict[Gene, float][source]

Get current metabolite concentrations.

Return type:

dict[Gene, float]

step(metabolite_concs: dict, dt: float)[source]

Take 1 frame step of time dt to calculate new metabolite concentrations.

Parameters:
  • metabolite_concs (dict)

  • dt (float)

class goo.gene.DegFirstOrder(x: goo.gene.Gene, k: float)[source]

Bases: Circuit

Parameters:
  • x (Gene)

  • k (float)

k: float

d[x]/dt = -k[x]

x: Gene
class goo.gene.Gene(name: str)[source]

Bases: object

Gene class to represent a gene in the gene regulatory network.

Parameters:

name (str) – Name of the gene.

class goo.gene.GeneRegulatoryNetwork(concs: dict = {}, circuit_engine: CircuitEngine | None = None)[source]

Bases: object

Gene regulatory network to simulate gene expression.

Parameters:
  • concs (dict) – Initial concentrations of genes.

  • circuit_engine (CircuitEngine) – Engine to simulate gene regulatory networks

copy() GeneRegulatoryNetwork[source]
Return type:

GeneRegulatoryNetwork

load_circuits(*circuits: Circuit)[source]

Load engine with model network.

Parameters:

circuits (Circuit)

update_concs(diffusion_system: DiffusionSystem | None = None, center: mathutils.Vector | None = None, radius: float | None = None, dt=1)[source]

Update network concentrations based on underlying diffusion systems, cell center and radius.

Parameters:
  • diffusion_system (DiffusionSystem | None)

  • center (mathutils.Vector | None)

  • radius (float | None)

update_metabolite_concs(iter=5, dt=1)[source]

Update network concentrations based on the model.

update_signaling_concs(diffusion_system: DiffusionSystem, center: mathutils.Vector, radius: float)[source]

Update network concentrations based on the underlying diffusion system.

Parameters:
  • diffusion_system (DiffusionSystem)

  • center (mathutils.Vector)

  • radius (float)

class goo.gene.ProdActivation(y: Gene, x: Gene, kcat: float, Km: float = 1, n: float = 2, s: Gene | None = None, a0: float = 0)[source]

Bases: Circuit

d[y]/dt = kcat * [x]**n / (Km + [x]**n), optional substrate s consumed, and optional leaky factor a0.

Parameters:
  • y (Gene)

  • x (Gene)

  • kcat (float)

  • Km (float)

  • n (float)

  • s (Gene)

  • a0 (float)

Km: float = 1
a0: float = 0
kcat: float
n: float = 2
s: Gene = None
x: Gene
y: Gene
class goo.gene.ProdAnd(z: Gene, x: Gene, y: Gene, k: float, nx: float = 2, ny: float = 2, s: Gene | None = None, a0: float = 0)[source]

Bases: Circuit

d[z]/dt = k([x] AND [y]), optional substrate s consumed, and optional leaky factor a0.

Parameters:
  • z (Gene)

  • x (Gene)

  • y (Gene)

  • k (float)

  • nx (float)

  • ny (float)

  • s (Gene)

  • a0 (float)

a0: float = 0
k: float
nx: float = 2
ny: float = 2
s: Gene = None
x: Gene
y: Gene
z: Gene
class goo.gene.ProdRepression(y: Gene, x: Gene, kcat: float, Km: float = 1, n: float = 2, s: Gene | None = None, a0: float = 0)[source]

Bases: Circuit

d[y]/dt = kcat / (Km + [x]**n), optional substrate s consumed, and optional leaky factor a0.

Parameters:
  • y (Gene)

  • x (Gene)

  • kcat (float)

  • Km (float)

  • n (float)

  • s (Gene)

  • a0 (float)

Km: float = 1
a0: float = 0
kcat: float
n: float = 2
s: Gene = None
x: Gene
y: Gene
class goo.gene.RoadRunnerEngine[source]

Bases: CircuitEngine

Engine to simulate gene regulatory networks using RoadRunner.

Parameters:
  • model – Model of the gene regulatory network.

  • result – Result of the simulation.

copy()[source]

Return copy of engine.

load_circuits(*circuits: Circuit)[source]

Load engine with model network.

Parameters:

circuits (Circuit)

load_sbml(sbml)[source]
retrieve_concs()[source]

Get current gene concentrations.

step(metabolite_concs: dict[Gene, float], iter: int = 5, dt: float = 1) None[source]

Calculates new gene concentrations.

Parameters:
  • metabolite_concs (dict[Gene, float])

  • iter (int)

  • dt (float)

Return type:

None